
S t e p h a n v a n S c h a i k

RIDL
Rogue In-flight Data Load

h t t p s : / / c y b e r w e e k . a e

S e b a s t i a n Ö s t e r l u n d

h t t p s : / / m d s a t t a c k s . c o m

https://mdsattacks.com

2

RIDL
Rogue In-flight Data Load

Stephan van Schaik - Alyssa Milburn

Sebastian Österlund - Pietro Frigo - Giorgi Maisuradze*

Kaveh Razavi - Herbert Bos - Cristiano Guiffrida

3

MDS ATTACKS

4

MDS ATTACKS

5

MDS ATTACKS

6

MDS ATTACKS

7

MDS ATTACKS

8

MDS ATTACKS

Speculative execution attacks

▪ Modern CPUs speculate on data for optimization
▪ Invisible to the user

9

if *inp == “42”

*secret = 42 try_again()

inp??

Leak 42 using cache attack

Speculate on branch
condition based on
previous branching
behavior

10

Let’s first talk about cache attacks

11

BACKGROUND

12

BACKGROUND

13

BACKGROUND

14

FLUSH + RELOAD

15

FLUSH + RELOAD

16

FLUSH + RELOAD

17

FLUSH + RELOAD

18

FLUSH + RELOAD

19

FLUSH + RELOAD

20

FLUSH + RELOAD

21

FLUSH + RELOAD

22

FLUSH + RELOAD

23

FLUSH + RELOAD

24

FLUSH + RELOAD

25

FLUSH + RELOAD

26

FLUSH + RELOAD

27

FLUSH + RELOAD

28

FLUSH + RELOAD

29

PREVIOUS ATTACKS

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Mitigations

• Kernel Page Table Isolation
• Array index masking
• XOR masking

50

Problem: leak kernel data from virtual addresses

KPTI

51

Solution: unmap kernel addresses

KPTI

52

So we have a system with all mitigations in-place

53

54

What can we still do as an attacker?

55

Takes around 24 hours

56

Meet Rogue In-flight Data Load or RIDL

A new class of speculative execution attacks

that knows no boundaries

57

Privilege levels are just a social construct

58

We can leak between hardware threads!

SECURITY DOMAINS

59

But can we leak across other security domains?

SECURITY DOMAINS

60

Yes, we can!

SECURITY DOMAINS

61

We leak from the kernel…

SECURITY DOMAINS

62

… across VMs…

SECURITY DOMAINS

63

… from the hypervisor…

SECURITY DOMAINS

64

… and from SGX enclaves!

SECURITY DOMAINS

65

We leak across all security domains!

16 . 8

6616 . 9

SECURITY DOMAINS

Can we leak from the browser?

67

SECURITY DOMAINS

Turns out we can!

• We reproduced RIDL in Mozilla Firefox
• No need for special instructions

68

We leak across security domains, even from the browser!

69

Memory addresses are a social construct too

70

Previous Attacks

Previous attacks show we can speculatively leak from addresses

71

Previous Attacks

Current mitigations depend on masking/isolating addresses

72

• Spectre: access out-of-bounds addresses
• Meltdown: leak kernel data from virtual addresses
• Foreshadow: leak from physical addresses

Previous Attacks

73

Previous Attacks

• Spectre: mask array index to limit address range
• Meltdown: unmap kernel from userspace
• Foreshadow: invalidate physical address

Mitigations:

74

Previous Attacks

• Previous attacks exploit addressing
• Mitigated by isolating/masking addresses

75

RIDL

RIDL does not depend on addressing

‣ Bypass all address-based security checks
‣ Makes RIDL hard to mitigate

76

What CPUs are affected by RIDL?

77

We bought Intel and AMD CPUs from
almost every generation since 2008

78

... and sent the invoices to our professor Herbert Bos

79

80

RIDL works on all mainstream Intel CPUs since 2008

81

82

83

Intel announces Coffee Lake Refresh

84

In-silicon mitigations against
Meltdown and Foreshadow

85

Let’s buy the Intel Core i9-9900K!

86

... and send another invoice to Herbert

87

We got it the day after we submitted the paper

88

RIDL works regardless of these in-silicon mitigations

89

90

AMD

We also tried to reproduce it on AMD
Turns out AMD is not affected

91

92

93

But where are we actually leaking from?

94

LEAKY SOURCES

95

LEAKY SOURCES

Previous attacks had it easy, they leak from caches

96

Caches are well documented and well understood.

LEAKY SOURCES

97

But RIDL does not leak from caches!

LEAKY SOURCES

98

But what else is there to leak from?

LEAKY SOURCES

99

There exist other internal CPU buffers

LEAKY SOURCES

100

Line Fill Buffers, Store Buffers, and Load Ports

LEAKY SOURCES

101

But there is more!

LEAKY SOURCES

102

Uncached memory

LEAKY SOURCES

103

We can leak from various internal CPU buffers!

104

RIDL is a class of speculative execution
attacks also known as

Micro-architectural Data Sampling

105

Let’s focus on one particular instance:

Line Fill Buffers

106

• We first read the manuals
• Some references to internal CPU buffers
• But no further explanation
• Where would you even start?

Manuals

107

That’s why we started reading patents instead!

108

We read a lot of patents, and survived!

109

So today I can tell you a bit more about internal
CPU buffers

110

But wait, what are these
Line Fill Buffers?

111

Line Fill Buffers?

Central buffer between execution units, L1d and L2 to
improve memory throughput

112

Line Fill Buffers?

Central buffer between execution units, L1d and L2 to
improve memory throughput

113

Line Fill Buffers?

Central buffer between execution units, L1d and L2 to
improve memory throughput

114

Line Fill Buffers?

Central buffer between execution units, L1d and L2 to
improve memory throughput

115

Multiple roles:

Line Fill Buffers?

• Asynchronous memory requests
• Load squashing
• Write combining
• Uncached memory

116

Multiple roles:

Line Fill Buffers?

• Asynchronous memory requests
• Load squashing
• Write combining
• Uncached memory

117

CPU design: what to do on a cache miss?

Line Fill Buffers?

1. Send out memory request
2. Wait for completion
3. Blocks other loads/stores

118

• Solution: keep track of address in LFB

Line Fill Buffers?

1. Send out memory request
2. Allocate LFB entry
3. Store address in LFB
4. Serve other loads/stores
5. Pending request eventually completes

119

• Solution: keep track of address in LFB

Line Fill Buffers?

1. Send out memory request
2. Allocate LFB entry
3. Store address in LFB
4. Serve other loads/stores
5. Pending request eventually completes

120

Line Fill Buffers?

• Allocate LFB entry
• May contain data from previous load
• RIDL exploits this

121

Experiments

Conclusion: our primary RIDL instance leaks from
Line Fill Buffers

122

Cool… so how do we actually mount a RIDL attack?

123

Ideas

• We can leak in-flight data
• Let’s get some sensitive data in-flight

124

Confused Deputy

• Observation: invoking passwd
utility reads /etc/shadow contents

• We can control the affinity of the
process with taskset

• Try to leak from the other Hyper-
Thread when /etc/shadow is in-flight

• Not so easy…

125

Challenges

126

Challenges

127

What does this program look like?

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

Challenges

143

Challenges

144

RIDL is like drinking from a fire hose

145

You just get whatever data is in flight!

146

Challenges

147

Filtering

We need to synchronize or do some post-processing

• Synchronize: not possible, we cannot change passwd binary
• Post-processing: we can repeat measurements, stitch them

together, filter measurements

148

Filtering Data

How can we filter data?

149

Filtering Data

• We want to leak from /etc/shadow
• First line is for root

• Starts with “root:”

150

Filtering Data

151

Filtering Data

• We want to leak from /etc/shadow
• First line is for root

• Starts with “root:”
• Use prefix matching:

• Match ⇒ we learn a new byte
• No match ⇒ discard

152

Filtering Data

153

Filtering Data

154

Filtering Data

155

Filtering Data

156

Filtering Data

157

Filtering Data

158

Filtering Data

159

Filtering Data

160

Filtering Data

161

Challenges

162

Attack scenarios

We can leak the root password hash from an
unprivileged user

Let’s extend this a bit… to the cloud!

16345 . 1

Threat Model

Victim VM in the cloud

164

Threat Model

We get an attacker VM in the cloud

165

Threat Model

We make sure they are co-located

166

Threat Model

The victim runs an SSH server

167

Threat Model

How do we get data in-flight?

168

In-flight data

We launch an SSH client on the attacker

169

In-flight data

… that keeps connecting to the SSH server

170

In-flight data

The SSH server loads /etc/shadow into the LFB

171

In-flight data

The contents from /etc/shadow are now in-flight

172

Leaking

Now that the data is in-flight, we want to leak it

173

Leaking

Run RIDL program on the attacker

174

Leaking

Which leaks the data from the LFB

175

More examples

More examples in the paper:
• Leaking internal CPU data (e.g. page tables)
• Arbitrary kernel read
• Leaking in the browser

176

Arbitrary kernel leak

• We can use Spectre in combination with RIDL
• Use gadgets to pull data into LFB
• Train branch predictor to allow arbitrary OOB read

177

• copy_from_user() can access arbitrary user-supplied
pointer

• Repeatedly call setrlimit() with valid user pointer to train
branch predictor

• After training, we supply it a kernel pointer we want to leak
• Will be executed speculatively, pulled into LFB

• At the same time we leak using RIDL

RIDL + Spectre

178

179

180

181

182

183

184

185

186

187

188

189

190

We attacked the cloud and have an arbitrary kernel read.

We still need a local account on the target…

What next?

191

192

Portability

• Some environments do not have TSX
• clflush might also not be available

193

Portability

• No clflush
• Use EVICT + RELOAD

• No TSX
• Use demand paging to generate valid

page faults (error suppression)

194

/* E v i c t b u f f e r f r o m c a c h e . * /
e v i c t (b u f f e r) ;

/* S p e c u l a t i v e l y l o a d t h e s e c r e t . * /
c ha r va l u e = * (n e w _ p a g e) ;

/* C a l c u l a t e t h e c o r r e s p o n d i n g entry. * /
c h a r * e n t r y _ p t r = buffer + (1 0 2 4 * v a l u e) ;

/* L o a d t h a t e n t r y into t h e c a c h e . * /
* (e n t r y _ p t r) ;

/* T i m e t h e r e l o a d o f e a c h b u f f e r e n t r y t o
see w h i c h e n t r y i s n o w c a c h e d . * /
for(k=0;k<256;++k){
 t0 = c y c l e s () ;
 * (b u f f e r + 1 0 2 4 * k) ;
 if (c y c l e s - t 0 < 1 0 0) + + r e s u l t s [k] ;
}

We can generate this code from WebAssembly!

195

FROM THE BROWSER

196

197

Existing mitigations

Three mechanisms:
• Inhibit trigger (stop speculation, fences, retpoline)
• Hide secret (KPTI, array index masking, L1d flush)
• Disrupt channel of leakage (disable timers)

198

Why they fail

Existing mitigations fail because
they assume addressing

199

RIDL mitigations

200

RIDL mitigations
• Same-thread:

• verw overwrites affected buffers

201

RIDL mitigations
• Same-thread:

• verw overwrites affected buffers
• Special Assembly snippets

202

RIDL mitigations
 xorl %eax, %eax
1: clflushopt 5376(%0, %rax, 8)
 addl %eax, $8
 cmpl $8*12, %eax
 jb 1
 movl $6144, %ecx
 xorl %eax, %eax
 rep stosb
 mfence

203

RIDL mitigations
• Same-thread:

• verw overwrites affected buffers
• Special Assembly snippets

• Cross-thread:
• Complex scheduling and synchronization

204

RIDL mitigations

205

RIDL mitigations
• Same-thread:

• verw overwrites affected buffers
• Special Assembly snippets

• Cross-thread:
• Complex scheduling and synchronization
• Disable Intel Hyper-Threading®

206

Future of mitigations
Looking at the diagram, there might be other issues...

207

Future of mitigations

Yet another spot mitigation!

208

Is the attack realistic??

24 hours… meh…

209

DEMO

210

211

Take-home message

These issues need to be fixed at a
fundamental level before attackers start

abusing these in the wild!

212

Disclosure
Process

213

214

215

216

217

218

219

220

221

MDS Tool
Stephan wrote a tool to verify your system:

222

• Spectre and Meltdown, just one mistake?
• New class of speculative execution attacks
• Many more buffers other than caches to leak from
• Does not rely on address => hard to mitigate

across security domains, and in the browser

@themadstephan @sirmc @vu5ec

mdsattacks.com

Conclusion

https://www.twitter.com/themadstephan
https://www.twitter.com/sirmc
https://www.twitter.com/vu5ec
https://www.mdsattacks.com

