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MDS ATTACKS



Speculative execution attacks

▪ Modern CPUs speculate on data for optimization 
▪ Invisible to the user

9

if *inp == “42”

*secret = 42 try_again()

inp??

Leak 42 using cache attack

Speculate on branch 
condition based on 
previous branching 
behavior
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Let’s first talk about cache attacks
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FLUSH + RELOAD
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26

FLUSH + RELOAD
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FLUSH + RELOAD
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PREVIOUS ATTACKS
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Mitigations

• Kernel Page Table Isolation 
• Array index masking 
• XOR masking



50

Problem: leak kernel data from virtual addresses

KPTI
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Solution: unmap kernel addresses

KPTI
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So we have a system with all mitigations in-place
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What can we still do as an attacker?



55

Takes around 24 hours
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Meet Rogue In-flight Data Load or RIDL 

A new class of speculative execution attacks 

that knows no boundaries
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Privilege levels are just a social construct
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We can leak between hardware threads!

SECURITY DOMAINS 
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But can we leak across other security domains?

SECURITY DOMAINS 
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Yes, we can!

SECURITY DOMAINS 
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We leak from the kernel…

SECURITY DOMAINS 
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… across VMs…

SECURITY DOMAINS 
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… from the hypervisor…

SECURITY DOMAINS 
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… and from SGX enclaves!

SECURITY DOMAINS 
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We leak across all security domains!

16 . 8
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SECURITY DOMAINS 

Can we leak from the browser?
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SECURITY DOMAINS 

Turns out we can!

•  We reproduced RIDL in Mozilla Firefox 
•  No need for special instructions
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We leak across security domains, even from the browser!
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Memory addresses are a social construct too
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Previous Attacks 

Previous attacks show we can speculatively leak from addresses
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Previous Attacks 

Current mitigations depend on masking/isolating addresses
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• Spectre: access out-of-bounds addresses 
• Meltdown: leak kernel data from virtual addresses 
• Foreshadow: leak from physical addresses

Previous Attacks 
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Previous Attacks 

• Spectre: mask array index to limit address range 
• Meltdown: unmap kernel from userspace 
• Foreshadow: invalidate physical address

Mitigations:
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Previous Attacks 

• Previous attacks exploit addressing 
• Mitigated by isolating/masking addresses 
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RIDL 

RIDL does not depend on addressing

‣  Bypass all address-based security checks 
‣  Makes RIDL hard to mitigate
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What CPUs are affected by RIDL?
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We bought Intel and AMD CPUs from 
almost every generation since 2008
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... and sent the invoices to our professor Herbert Bos
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RIDL works on all mainstream Intel CPUs since 2008
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Intel announces Coffee Lake Refresh
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In-silicon mitigations against 
Meltdown and Foreshadow
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Let’s buy the Intel Core i9-9900K!
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... and send another invoice to Herbert
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We got it the day after we submitted the paper
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RIDL works regardless of these in-silicon mitigations
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AMD 

We also tried to reproduce it on AMD 
Turns out AMD is not affected
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But where are we actually leaking from?
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LEAKY SOURCES
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LEAKY SOURCES

Previous attacks had it easy, they leak from caches
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Caches are well documented and well understood.

LEAKY SOURCES
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But RIDL does not leak from caches!

LEAKY SOURCES
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But what else is there to leak from?

LEAKY SOURCES
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There exist other internal CPU buffers

LEAKY SOURCES
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Line Fill Buffers, Store Buffers, and Load Ports

LEAKY SOURCES
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But there is more!

LEAKY SOURCES
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Uncached memory

LEAKY SOURCES
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We can leak from various internal CPU buffers!
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RIDL is a class of speculative execution 
attacks also known as 

Micro-architectural Data Sampling
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Let’s focus on one particular instance: 

Line Fill Buffers
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•  We first read the manuals 
•  Some references to internal CPU buffers 
•  But no further explanation 
•  Where would you even start?

Manuals
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That’s why we started reading patents instead!
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We read a lot of patents, and survived!
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So today I can tell you a bit more about internal 
CPU buffers
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But wait, what are these 
Line Fill Buffers?
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Line Fill Buffers?

Central buffer between execution units, L1d and L2 to 
improve memory throughput
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Line Fill Buffers?

Central buffer between execution units, L1d and L2 to 
improve memory throughput
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Line Fill Buffers?

Central buffer between execution units, L1d and L2 to 
improve memory throughput
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Multiple roles:

Line Fill Buffers?

• Asynchronous memory requests 
• Load squashing 
• Write combining 
• Uncached memory



116

Multiple roles:

Line Fill Buffers?

• Asynchronous memory requests 
• Load squashing 
• Write combining 
• Uncached memory
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CPU design: what to do on a cache miss?

Line Fill Buffers?

1. Send out memory request  
2. Wait for completion  
3. Blocks other loads/stores
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• Solution: keep track of address in LFB

Line Fill Buffers?

1. Send out memory request  
2. Allocate LFB entry 
3. Store address in LFB  
4. Serve other loads/stores 
5. Pending request eventually completes



119

• Solution: keep track of address in LFB

Line Fill Buffers?

1. Send out memory request  
2. Allocate LFB entry 
3. Store address in LFB  
4. Serve other loads/stores 
5. Pending request eventually completes
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Line Fill Buffers?

• Allocate LFB entry 
• May contain data from previous load 
• RIDL exploits this
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Experiments

Conclusion: our primary RIDL instance leaks from 
Line Fill Buffers
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Cool… so how do we actually mount a RIDL attack?
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Ideas

• We can leak in-flight data 
• Let’s get some sensitive data in-flight
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Confused Deputy

•  Observation: invoking passwd 
utility reads /etc/shadow contents 

•  We can control the affinity of the 
process with taskset 

•  Try to leak from the other Hyper-
Thread when /etc/shadow is in-flight 

•  Not so easy…
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Challenges
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Challenges
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What does this program look like?
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Challenges
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Challenges
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RIDL is like drinking from a fire hose
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You just get whatever data is in flight!
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Challenges
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Filtering

We need to synchronize or do some post-processing

•  Synchronize: not possible, we cannot change passwd binary 
•  Post-processing: we can repeat measurements, stitch them 

together, filter measurements
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Filtering Data

How can we filter data?
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Filtering Data

•  We want to leak from /etc/shadow 
•  First line is for root 

•  Starts with “root:”
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Filtering Data
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Filtering Data

•  We want to leak from /etc/shadow 
•  First line is for root 

•  Starts with “root:” 
•  Use prefix matching: 

•  Match ⇒ we learn a new byte 
•  No match ⇒ discard
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Filtering Data
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Filtering Data
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Filtering Data
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Filtering Data
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Filtering Data
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Filtering Data
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Filtering Data
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Filtering Data
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Filtering Data
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Challenges
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Attack scenarios

We can leak the root password hash from an 
unprivileged user

Let’s extend this a bit… to the cloud!
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Threat Model

Victim VM in the cloud
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Threat Model

We get an attacker VM in the cloud
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Threat Model

We make sure they are co-located
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Threat Model

The victim runs an SSH server
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Threat Model

How do we get data in-flight?
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In-flight data

We launch an SSH client on the attacker
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In-flight data

… that keeps connecting to the SSH server
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In-flight data

The SSH server loads /etc/shadow into the LFB
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In-flight data

The contents from /etc/shadow are now in-flight
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Leaking

Now that the data is in-flight, we want to leak it
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Leaking

Run RIDL program on the attacker



174

Leaking

Which leaks the data from the LFB
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More examples

More examples in the paper: 
•  Leaking internal CPU data (e.g. page tables) 
• Arbitrary kernel read  
• Leaking in the browser
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Arbitrary kernel leak

•  We can use Spectre in combination with RIDL 
•  Use gadgets to pull data into LFB 
•  Train branch predictor to allow arbitrary OOB read
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•  copy_from_user() can access arbitrary user-supplied 
pointer 

•  Repeatedly call setrlimit() with valid user pointer to train 
branch predictor 

•  After training, we supply it a kernel pointer we want to leak 
•  Will be executed speculatively, pulled into LFB 

•  At the same time we leak using RIDL

RIDL + Spectre
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We attacked the cloud and have an arbitrary kernel read. 

We still need a local account on the target…

What next?
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Portability

• Some environments do not have TSX 
• clflush might also not be available
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Portability

• No clflush 
• Use EVICT + RELOAD 

• No TSX 
• Use demand paging to generate valid 

page faults (error suppression)
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/* E v i c t  b u f f e r  f r o m  c a c h e .  * /   
e v i c t ( b u f f e r ) ;  

/* S p e c u l a t i v e l y  l o a d  t h e  s e c r e t .  * /   
c ha r  va l u e  =  * ( n e w _ p a g e ) ;  

/* C a l c u l a t e  t h e  c o r r e s p o n d i n g  entry. * /   
c h a r  * e n t r y _ p t r  =  buffer +  (1 0 2 4  *  v a l u e ) ;  

/* L o a d  t h a t  e n t r y  into t h e  c a c h e .  * /   
* ( e n t r y _ p t r ) ;  

/* T i m e  t h e  r e l o a d  o f  e a c h  b u f f e r  e n t r y  t o  
see w h i c h  e n t r y  i s  n o w  c a c h e d .  * /  
for(k=0;k<256;++k){  
  t0 =  c y c l e s ( ) ;   
  * ( b u f f e r  +  1 0 2 4  *  k ) ;  
  if ( c y c l e s  -  t 0  <  1 0 0 )  + + r e s u l t s [ k ] ;  
}

We can generate this code from WebAssembly!
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FROM THE BROWSER
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Existing mitigations

Three mechanisms: 
• Inhibit trigger (stop speculation, fences, retpoline) 
• Hide secret (KPTI, array index masking, L1d flush) 
• Disrupt channel of leakage (disable timers)
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Why they fail

Existing mitigations fail because 
they assume addressing
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RIDL mitigations
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RIDL mitigations
• Same-thread: 

•  verw overwrites affected buffers
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RIDL mitigations
• Same-thread: 

•  verw overwrites affected buffers 
•  Special Assembly snippets
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RIDL mitigations
   xorl %eax, %eax
1: clflushopt 5376(%0, %rax, 8)
   addl %eax, $8
   cmpl $8*12, %eax
   jb 1
   movl $6144, %ecx
   xorl %eax, %eax
   rep stosb
   mfence
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RIDL mitigations
• Same-thread: 

•  verw overwrites affected buffers 
•  Special Assembly snippets 

• Cross-thread: 
•  Complex scheduling and synchronization
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RIDL mitigations
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RIDL mitigations
• Same-thread: 

•  verw overwrites affected buffers 
•  Special Assembly snippets 

• Cross-thread: 
•  Complex scheduling and synchronization 
•  Disable Intel Hyper-Threading®
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Future of mitigations
Looking at the diagram, there might be other issues...
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Future of mitigations

Yet another spot mitigation!
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Is the attack realistic??

24 hours… meh…
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DEMO
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Take-home message

These issues need to be fixed at a 
fundamental level before attackers start 

abusing these in the wild!
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Disclosure 
Process
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MDS Tool
Stephan wrote a tool to verify your system:
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•  Spectre and Meltdown, just one mistake? 
•  New class of speculative execution attacks 
•  Many more buffers other than caches to leak from 
•  Does not rely on address => hard to mitigate 

across security domains, and in the browser

@themadstephan @sirmc @vu5ec

mdsattacks.com

Conclusion

https://www.twitter.com/themadstephan
https://www.twitter.com/sirmc
https://www.twitter.com/vu5ec
https://www.mdsattacks.com

